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Conclusion 

The determination of the polarization vectors seems 
to involve a number of experimental problems (see 
for example, Dolling & Woods, 1965; Brockhouse, 
1964). The recent evaluation of the polarization vector 
of the ferroelectric soft mode in KD2PO4 by Skalyo, 
Frayer & Shirane (1970) is of some interest in this con- 
nexion. It is not possible to foresee all the obstacles 
that may be encountered when the anomalous scat- 
tering technique as proposed in this paper is used for 
determining the polarization vectors. It may be neces- 
sary to use lower concentrations of the anomalously 
scattering isotope in the specimen. However, in view 
of the inherent directness of this method, it appears 
worth while pursuing this experimental approach. 

The authors wish to thank Mr Rajaram Nityananda 
for the discussions they had with him. 
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The Performances of Neutron Collimators 
I. Accurate Transmitted Intensity Evaluations for Neutron Collimator Systems 
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Limitations imposed by the geometry of Soller collimator systems on luminosity and resolution of neu- 
tron diffraction equipment are studied on the grounds of angular and spatial distribution of neutrons. 
Transmission functions for collimator systems of arbitrary complexity are derived. The influence of the 
mutual distances among the various components of the experimental set-up on the shape of transmission 
functions is given in evidence. Careful intensity measurements performed with well diversified arrange- 
ments of Soller collimators are in fair agreement with our theoretical results. The way to improve the 
performances of neutron diffraction equipment by a proper choice of all the geometrical parameters 
is shown. 

1. Introduction 

The influence of collimator parameters (typically the 
angular divergence) on luminosity and resolution of 
single or multi-axis neutron spectrometers is usually 
derived on the basis of Sailor's hypothesis (Sailor, 
Foote, Landon & Wood, 1956; Caglioti, Paoletti & 
Ricci, 1958, 1960; Caglioti & Ricci, 1962; Popovici & 
Gelberg, 1966). Sailor et al. (1956) assume that col- 
limator transmission functions can be conveniently 
described by a Gaussian function n(tp), where (p is the 
angle between the projection of any individual neutron 
trajectory on a horizontal plane and the collimator 
centre line; the full width at half maximum of the 

Gaussian distribution is the angular divergence of the 
collimator. 

Nevertheless neutron sources and collimators are 
quite sizeable, so that a more correct approach should 
take into account the dependence of transmission 
functions not only on direction but also on position of 
any individual neutron. In this last way Szab6 (1959) 
and Jones (1962) worked out relations on intensity and 
parameter optimization limited to a single (primary) 
collimator, and Carpenter (1963) discussed a more 
general approach to the problem, giving a graphical 
representation of collimator transmission functions. 

In the following sections we derive general transmis- 
sion functions for neutron collimator systems, taking 
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Fig. 1. Reference frame for evaluating the values (~0, ~,) to be 
associated to a neutron trajectory ~. Angle ~0 is measured 
in the (x,z) plane, angle ~, is measured in the (y,z) plane. 

into account both position and direction of the neu- 
trons. We find equations for the overall transmitted 
intensity valid for sources of any kind, but we give 
analytical relations in definite form only for the case 
of a uniform and isotropic neutron source, a condition 
that is fulfilled in most cases of practical interest. We 
consider only Soller rectangular collimators, the type 
generally used in diffraction experiments, and suppose 
their walls be perfectly absorbing. We also show the 
way in which collimator parameters and mutual 
distances among collimators in a system affect trans- 
mission functions and transmitted intensities. Compar- 
ison between theoretical results and experimental data 
points out the effectiveness of our approach to the 
proper description of the role played by all the 
parameters involved. 

2. Theory 

(a) A single collimator in the beam 
Let us consider a plane and indefinite neutron 

source and a single-slit collimator (height h, width s 
and length l) whose axis is normal to the source. With 
reference to the rectangular coordinate system shown 
in Fig. 1, the neutron density at the source plane (z = 0) 
can be properly described as S(x,y,O,~o,~,) so that 
S(x,y,O,~o,~t)dxdyd~od~t is the number of neutrons 
emitted by the element of area dxdy about (x,y) in the 
solid angle element d~0d~ about (~0, ~,). We want to 
derive an expression for the density of neutrons at 
points in the transmitted beam, for example those 
belonging to a reference plane parallel to the source, 
at a distance z=:L This can be accomplished in a 
simple way by keeping track of the neutrons in the 
beam. We consider all the possible neutron trajectories 
starting from the source plane, passing through the 
collimator without intersecting its walls and reaching 
the reference plane. Each one of these 'allowed' 

trajectories is characterized by a set of values 
(x,y,~,~o,~). We define the transmission function of 
the collimator considered, at z=2 ,  as a function 
A(x,y,Y.,~o, us) that is unity for any set of variables cor- 
responding to an allowed trajectory, and is zero for 
any other set. Therefore the transmitted neutron 
density at the reference plane is simply 

S(x,y,O,~o, ~u) . A(x,y ,Z,~o,  ~u). 

To establish the domain in which A is unity, we note 
that, owing to the particular choice of the reference 
frame, the transmission in the (x, ~0) (horizontal) plane is 
independent of that in the (y, ~,) (vertical) plane, for 
rectangular collimators. That is, 

A(x,y,2,~o,~)=An(x,~.,09) . Av(y,~.,~') . (1) 

I / ) . ,~ d 

X'~ 

r 

Fig. 2. x-transmission limits for ~0-neutrons and correspond- 
ence between source and reference planes. 
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Fig. 3. Geometrical representation of the domain in which Ah 
is unity. 
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Fig. 2 shows how the function Ah(x,5,qO can be 
evaluated. A well defined range of x values (xbx2) on 
the source plane corresponds to any emission angle ~0, 
for which emerging neutrons are transmitted by the 
collimators and cross the reference plane, so defining 
a range (x'l, x~) in which all the neutrons emitted at an 
angle ~0 from the collimator centre line and belonging 
to the transmitted density are present. The interval 
Ax  = X 2 - -  X 1 and the interval Ax'  = x'z - x'l depend only 
on the collimator geometry: A x = A x ' = s - l  I~0l= 
s(l -[¢[/c 0. A plot of x as a function of q) at z = 5  for all 
the allowed neutron trajectories is illustrated in Fig. 3. 

x g . . . . .  

Fig. 4. Dependence of An on the distance from the outlet 
surface of the collimator. 

x I 

Fig. 5. 5-slit collimator transmission function representation 
in the horizontal plane (see text). 

Ah(x,5,~o) is unity inside the parallelogram, and zero 
everywhere outside. The function Av(y, ~, ~t) is similarly 
defined and exhibits the same properties. According to 
equation (1), and also, since the product 

Ah(x,5,~o) . Av(y,5, V) 

can take only 1 or 0 values, the function A(x,y,5,~o, ~,) 
is the transmission function wanted for a rectangular 
single-slit collimator. Its analytical definition for a col- 
limator of length l, width s and height h, located at a 
distance d from the reference plane, follows from the 
parallelogram edge equations: 

{ x2--d~o+s/2 { x2=(d+lq~+s/2 
q~ > 0 xl  = (d + l)~o - s/2 q~ <- 0 Xl = dq~ - s/2 

v > O  { y2=d~u+h/2 { 
- y ~ = ( d + l ) ~ u - h / 2  ~u<_O 

Y2 = (d+ 1)~ + h/2 
y~ = d ~ t -  h/2 . 

(2) 
of main importance While the knowledge of density is 

when dealing with the interaction of neutrons with a 
monochromating crystal or a sample in the beam, the 
performances of collimator systems are more con- 
veniently discussed in terms of intensity. The overall 
transmitted intensity, evaluated on the reference plane, 
is 

× A(x,y,5.~o,~u) dxdyd~0dg/. (3) 

In most cases of practical interest, the neutron source 
can be considered uniform and isotropic, so that its 
density is a constant C (neutrons/cmZ.sterad.sec). 
Therefore 

S+ S 2S2:g   I =  C . A(x,y,5,~o, ~u)dxdyd~od~u (3.1) 

and remembering equation (1). 

,-- c C ) 

= C.  Ah.  A v=  C .  G(~) (3-2) 

where Ah and Av are the parallelogram areas in the 
horizontal (x, ~0) plane and in the vertical (y, ~u) plane, 
respectively. Integration limits suit the definition of the 
A functions. Equation (3.2) shows that the intensity 
evaluated on the reference plane is equal to the neutron 
density C of the source times the product of the areas 
of the two A parallelograms, which is a geometrical 
factor G(1) directly proportional to the overall trans- 
mitted intensity. (The subscript (1) stands for a single- 
slit collimator.) Note that the parallelogram areas Ah 
and Av [and therefore the value of the integral (3.2)] 
are clearly independent of 5, while it is shown in Fig. 4 
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Fig. 6. Two-collimator system transmission function evaluated 
on a reference plane located at the outlet surface of the 
second collimator. 

that the transmission functions are dependent on 
(and hence on d). The geometrical factor G(I) is no 
longer proportional to the overall transmitted intensity 
in the general case referred to in equation (3). 

Extension of the above arguments and calculations 
to multi-slit Soller collimators is straightforward; in 
fact transmissions by each slit are independent of one 
another, and equation (1) is still valid, so we can separate 
the variables, as we did before. The A function is graphi- 
cally represented in the horizontal plane by as many pa- 
rallelograms as the collimator has slits, while in the ver- 
tical plane it consists of only one parallelogram. A ty- 
pical situation in the horizontal plane is shown in Fig. 5, 
in which the shadow effect due to the separation shims 
is also displayed (the larger parallelogram represents 
the transmission function that would be obtained by 
removing the shims). Note that there is no overlap 
among the parallelograms (the slits do not interact with 
one another), the separation shims being perfect 
absorbers. Consequently the overall intensity trans- 
mitted by an n-slit Soller collimator is given by 

I= S(x,y ,  O, ~o, ~) 
/ = 1  - - o o  

x Ai(x,y,  5, ~o, ~,)dxdyd~0d~, 

where Ai is the transmission function of the ith slit. 
If the density of the neutron source equals the constant 
C, equation (4) can be rewritten: 

I = C .  Ah. A v = C .  G(,) (5) 

where Ah is the sum of the parallelogram areas in the 
horizontal plane, and Av is the area of the parallelo- 
gram in the vertical plane; G(n) then represents the 
geometrical factor, directly proportional to the overall 
transmitted intensity, for an n-slit Soller collimator. 

(b) A collimator system in the beam 
Collimator systems can be dealt with in a very 

simple way, thanks to the above described properties of 
the A functions. In fact, in the absence of scattering, 
the transmission events through each collimator of the 
system are independent; for example the overall trans- 
mission function Alz(x,y,2,~o, ~,) for a two in-line col- 
limator system is the product of the transmission 
functions Aa and Az of the two collimators. Remember- 
ing equation (1) 

Alz(x,y ,z ,  qg, ~) 
=Ahl(x,5,(p). Anz(x,5,~o) . Avi(Y,5, ~) . Avz(y,~, ~u) (6) 

where the A functions will be in general of the type 
shown in Fig. 5. This means that the transmission 
event can be described in two planes normal to each 

(it) 

. . . .  

{H) 

?Q 
Fig. 7. Two-collimator system transmission function evaluated 

(4) on a reference plane passing through the rotation axis. 
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other, considering in each plane one collimator at a 
time, as in § 2(a). The graphical representation of the 
A12 function then consists of two sets of overlapping 
parallelograms, whose common parts are the regions 
m which A~2 is unity. This is shown in Fig. 6, which 
refers to the transmission in the (x, ~0) plane of a system 
of two single-slit collimators. To deal with particular 
problems (e.g. the direct beam curve interpretation) 
it is often more convenient to refer intensity calculations 
to a suitable plane, namely that passing through a 
rotation axis of the diffraction equipment. This is also 
allowed by the properties of the transmission functions 
A. The result is shown in Fig. 7. Note that the two 
shadowed areas in Figs. 6 and 7 are equal. 

The neutron intensity transmitted by a two collimator 
system is given by 

(7) x A tz(x,Y, z,, (P, ~')dxdyd~0d N 

X 

(it) (i) 

I =  

d=O d=~ 

(HI i" 

! 
d=l 

Fig. 8. Dependence  of  two identical 5-slit col l imator  system 
transmission funct ion on the distance d f rom the rota t ion 
axis. The higher order  overlaps are shown;  f rom left to 
right k = 0, k = I, k = 2. 

~10 5 

| t t tzz 
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Fig. 9. Neu t ron  source density C as evaluated for different 
col l imator  a r rangements .  Note  that  the Gs values are 
relative to differences both in a r rangements  and in the fea- 
tures of  the coll imating elements.  The mean value per unit 
power  level of  the reactor  (full line) is C =  3.045 x 105 + 1.7% 
neutrons/cm2,  sterad, sec.W. 

and when the neutron source density is constant, we 
can write 

I=  c .  Gs (8) 

where the geometrical factor Gs is 

Gs= A 12(x,y,-~, q), g t )dxdyd~0dp '  
- - o o  - - c ~  - - c o  

= Anl(X, if, rp)A hz(X, if, ~p)dxd(p 

X (S2: S ] :  Avl(Y,i,, gt)Av2(y,i, ~)dydgt).  (9) 

In this case the factor Gs (as G(1) and G(,)) is directly 
proportional to the overall transmitted intensity. 

Neutrons transmitted by one slit of the first Soller 
collimator in the system may pass through several slits 
of the second collimator; consequently the parallelo- 
grams involved in the graphical representation overlap, 
giving rise to new contributions to the transmitted 
intensity, as shown in Fig. 8. This will be discussed in 
§4. 

Calculations of Gs by means of equation (9) may 
become very complicated in general; nevertheless this 
trouble may be overcome by graphical evaluation of 
the areas of the overlapped parallelograms, on the 
basis of their edge equations. 

3. Experiments and discussion 

Neutron transmitted intensities have been measured 
by means of a standard single-axis crystal spectrometer 
[an improved version of that described by Giacchetti, 
Musci & Poletti (1963)], whose first collimator was 
located inside a radial beam-hole of the L-54M reactor 
operating at C.E.S.N.E.F. Geometrical parameters of 
the collimator system (overall length and width of col- 
limators, number and thickness of the shims, angular 
divergence of each collimating element of Sollers) 
could be varied in a wide range; the distance of col- 
limators from spectrometer rotation axis could be 
changed too. All the used collimators were of black- 
wall type, since the surface of the shims were coated 
with myristic acid, which is effective to suppress neutron 
total reflexion (Jones & Bartolini, 1963; Rossitto & 
Terrani, 1967). Neutrons were detected by means of a 
cylindrical BF3 proportional counter, located along 
the axis of the second collimator, whose surface was 
large enough to collect all the neutrons transmitted by 
the collimator system. 

To optimize the geometry of diffraction equipment 
and to check the effectiveness of the outlined approach, 
careful measurements of neutron intensity transmitted 
by a system consisting of two black-wall Soller col- 
limators in line have been performed in different 
experimental arrangements. The values of the col- 
limator parameters stot, h and l were held constant, 
while those of the number n of slits and then of the 
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angular divergence e of each slit were varied in a wide 
range. In this way arrangements both usual and quite 
unusual in neutron diffraction experiments were tested 
to ensure generality of conclusions. From experimental 
data concerning the intensity transmitted by different 
collimator systems, the source neutron density has 
been drawn by means of equation (8) and the results are 
shown in Fig. 9. Equation (8) requires that the neutron 
source is uniform and isotropic, as is often found. The 
evaluation of the geometrical factors Gs has been car- 
ried out in general on the lines sketched in § 2(b). Only 
in some particularly significant cases analytical rela- 
tions for Gs have been derived, as will be shown in 
§ 4. The agreement among the values obtained for the 
source density in the various examined arrangements 
of collimators is quite satisfactory and shows that the 
r61e played by the various parameters involved has 
been properly described. 

Our experimental results point out that the hypoth- 
esis on the source nature is quite reasonable. The 
result enables one to establish the source neutron 
density (if constant) with great accuracy, employing a 
very simple collimation system, even consisting of 
single-slit collimators. Once the source density is 
known, the calculation of neutron intensity transmitted 
by a collimation system, however complicated, is an 
easy job [equation (8)], since the factor Gs explicitly in- 
cludes the dependence of the transmitted intensity on 
all the geometrical parameters of the equipment con- 
sidered. A further check of the theory will be given in 
a later paper, in which neutron intensities transmitted 
by systems of two Soller collimators are discussed as a 
function of the angle between the collimator centre 
lines. Experimental data are compared with theoretical 
results obtained with the use of the approach previous- 
ly outlined: the agreement is quite good over the whole 
of the angular range explored. 

4. Two-collimator system: dependence of the transmitted 
intensity on the mutual distance 

We now derive relations, useful to choose the best 
values for geometrical parameters of a neutron dif- 
fraction experimental set-up. To simplify calculations 
we discuss the behaviour of a system of two identical 
Soller collimators located at equal distances from the 
rotation axis. This can be done with no loss in generali- 
ty. Let us study the behaviour of the neutron intensity 
transmitted by such a system as a function of the 
distance of the collimators from the rotation axis, when 
the number n of the slits is changed. Again we suppose 
the length l, the height h and the total width Stot of the 
collimators are fixed. The contribution of a single slit 
of the system to the geometrical factor Gs is 

s 2h 2 sho~fl 
A°= 4(d+--------/)--i- = 4(--] +---d/i) -z (10) 

where c~ = s/l and fl = h/l are the angular divergences in 
the horizontal and vertical plane respectively, and s=  

[Stot- ( n -  1)v]/n, where v is the thickness of the shims. 
Therefore the geometrical factor for n slits, in the 
absence of overlaps, is 

Go = nAo (11) 

and when k overlaps occur [as mentioned in § 2(b)] 

G s = G o + G l +  . . .  +Glc 
= n A 0 + ( n -  1)Aa+ . . .  + ( n - k ) A k  

where 

Ak-- 

d v 2 [t2;, _ 1)(1+ s)] 

s2h 2 
× (k> 1). 

(12) 

(13) 

Now putting x = d/l and 7 = v/s 

- s h ~  Ae= [ ( 2 x - ? 0 - ( k  1)(1+)0] 2 × 
x(1 + 2x) 4(1 + x) 2 

(14) 

t Gs(x) Go(0) 
1"0 

0"5 

n-5 k-4 

0 
0 0"5 1;0 1"5 2:0 2:5 3:0 3"5~x 

Fig. 10. Dependence  on x = d / l  of  the geometrical  factor  Gs 
for n = l, 2, 3, 5 and k = 0, l, 2, 4 respectively. 
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Fig. 11. Relative weight of  higher order  overlaps for  a n = 5  
two an col l imator  system as a funct ion of  x =  d/l. 
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and 
nsh~fl k 

Gs(x)-  4 ( l + x )  2 + ~ ( n - j ) a j ( x ) .  (15) 
1=1 

The j th  overlap occurs at that value of x = x ( j )  for 
which the numerator in equation (14) vanishes, so that 

x ( j ) =  j(1 + 7 ) -  1 (16) 
2 

The geometrical factor for collimators joined together 
(x=0)  and therefore with no overlap is given by 
equation (11) which can be rewritten 

nsh~fl (17) 
a0(o)= 4 

The dependence of Gs on the mutual distances between 
the collimators can be put in better evidence introduc- 
ing equation (17) in equations (14) and (15) and study- 
ing the ratio Gs(x)/Go(O) that is independent of s, h, 
and fl 

Gs(X)_  1 k n--j  
Go(O) (1 + 2;- 1= 1 tl 

[ ( 2 x - 7 ) - ( j -  1) (1 + 7)] 2 (18) 
X . . . . . . . .  

x (1 + 2x) (1 + x) 2 ' 

Fig. 10 shows a plot of Gs(x)/Go(O) as a function of x 
for several different values of the slit number n. The 
intensity enhancements due to the overlap effects at 
the various x(j) are clearly shown. Fig. 11 is a plot of 
Gk(x)/Go(x) as a function of x for a system made up of 
two Soller collimators with n = 5 slits. It represents the 
contribution of each kth overlap to the total trans- 
mitted intensity (in units of transmitted intensity 
without overlap) as a function of x. It can be easily 
realized that Gk(x) can reach very high values for k = 1 
[in the range of 100 to 200% over the values of G0(x)]. 

As to the dependence of the neutron intensity trans- 
mitted by a collimator system on the horizontal 
angular divergence c~ of the Soller slits, it is easy to 
derive the following relations from equations (10) and 
(13). 

nh2o~ 2 
Go(x)- 4(1 + x) 2 (19) 

Ae(x)= [ ( 2 x - ~ , ) - ( k -  1) (1 + 2,)] z hzc~ 2 
4x(i~21 - 2 x ~  .... × (~+ x)--- ~ . (20) 

Therefore the geometrical factor Gs(x) is proportional 
to ~2 and so is the transmitted intensity. Nevertheless, 
owing to the influence of the other geometrical parame- 
ters on the intensity equations (10) and (13), this result 
can undergo immediate experimental check only for a 
system in which 1l, h, v and the ratio d/l are kept 
constant. 

5. Conclusions 

The results we have obtained above for systems of two 
identical Soller collimators are valid for more com- 
plicated systems, as to the dependence of the trans- 
mitted intensity on the more significant parameters of 
the experimental arrangements. Analytical calculations 
may be troublesome, but graphical evaluations can be 
performed quickly and easily in any case, as indicated 
in § 2(b). 

Therefore, from a quite general point of view, it is 
evident that correct and complete insight into the in- 
vestigated phenomena can be reached by taking into 
account the spatial neutron distribution in addition to 
the angular one. 
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